Fully functional electronic circuits can now be 3D printed thanks to a pioneering breakthrough by researchers at Nottingham University.
The circuits contain electrically-conductive metallic inks and insulating polymeric inks that are produced in a single inkjet printing process where UV light solidifies the inks.
According to the university, the technique paves the way for the electronics manufacturers to produce fully functional components such as 3D antennae and sensors from multiple materials including metals and plastics.
The new method is said to combine 2D printed electronics with 3D printing to create 3D products. This expands the impact of Multifunctional Additive Manufacturing (MFAM), which involves printing multiple materials in a single additive manufacturing system to create components with broader functionalities.
The new method is claimed to overcome some of the challenges in manufacturing fully functional devices that contain plastic and metal components in complex structures, where different methods are required to solidify each material.